SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. StructuralAndAdhesion
  2. P57087

  • StructuralAndAdhesion
    • A6H8M9
    • A6NMB1
    • B0FP48
    • O00533
    • O14493
    • O14917
    • O15389
    • O15394
    • O15551
    • O43556
    • O43699
    • O60245
    • O60330
    • O60469
    • O60487
    • O75309
    • O75508
    • O75631
    • O75712
    • O75871
    • O94856
    • O94985
    • O95206
    • O95297
    • O95377
    • O95452
    • O95471
    • O95484
    • O95832
    • P06731
    • P08034
    • P12830
    • P13591
    • P13688
    • P17302
    • P19022
    • P20138
    • P20273
    • P20916
    • P22223
    • P25189
    • P29033
    • P31997
    • P32004
    • P32926
    • P33151
    • P35212
    • P40198
    • P40199
    • P50895
    • P54851
    • P55283
    • P55285
    • P55286
    • P55287
    • P55289
    • P55290
    • P55291
    • P56746
    • P56747
    • P56748
    • P56749
    • P56856
    • P56880
    • P57087
    • P78369
    • P82279
    • Q3KPI0
    • Q5IJ48
    • Q5T442
    • Q6PEY0
    • Q6UWV2
    • Q6UY09
    • Q6V0I7
    • Q6V1P9
    • Q6ZMC9
    • Q7Z5N4
    • Q7Z692
    • Q08ET2
    • Q8IXH8
    • Q8N3J6
    • Q8N6F1
    • Q8N6Y1
    • Q8N7P3
    • Q8N126
    • Q8NFK1
    • Q8TAB3
    • Q8TD84
    • Q8TDW7
    • Q9BQT9
    • Q9BT76
    • Q9BUF7
    • Q9BY67
    • Q9BYE9
    • Q9BZA7
    • Q9BZA8
    • Q9H4D0
    • Q9H6B4
    • Q9H159
    • Q9H251
    • Q9HBB8
    • Q9HBT6
    • Q9HC56
    • Q9HCL0
    • Q9NPG4
    • Q9NRJ7
    • Q9NTQ9
    • Q9NYQ8
    • Q9NYZ4
    • Q9P2E7
    • Q9P2J2
    • Q9UJ99
    • Q9UKL4
    • Q9ULB4
    • Q9ULB5
    • Q9UN66
    • Q9UN67
    • Q9UPX0
    • Q9Y5E1
    • Q9Y5E2
    • Q9Y5E3
    • Q9Y5E4
    • Q9Y5E5
    • Q9Y5E6
    • Q9Y5E7
    • Q9Y5E8
    • Q9Y5E9
    • Q9Y5F0
    • Q9Y5F1
    • Q9Y5F2
    • Q9Y5F3
    • Q9Y5G8
    • Q9Y5I7
    • Q9Y6H8
    • Q9Y6N8
    • Q9Y286
    • Q9Y336
    • Q58EX2
    • Q86SJ6
    • Q86UP0
    • Q86VR7
    • Q96JP9
    • Q96JQ0
    • Q96LC7
    • Q96LD1
    • Q96PQ1
    • Q96QU1
    • Q96RL6
    • Q02413
    • Q02487
    • Q08174
    • Q08554
    • Q12864
    • Q13634
    • Q14002
    • Q14126
    • Q14517
    • Q14574
    • Q16585
    • Q16586
    • Q92629
    • Q92823

  • Other
    • A1L157
    • A6NDA9
    • B6SEH8
    • B6SEH9
    • O00241
    • O00478
    • O00481
    • O14817
    • O42043
    • O43155
    • O43300
    • O43657
    • O60635
    • O60636
    • O60637
    • O75144
    • O75325
    • O75954
    • O94898
    • O94933
    • O94991
    • O95857
    • O95858
    • P0C6S8
    • P0C7U0
    • P0DKB5
    • P07359
    • P08247
    • P08962
    • P11049
    • P13224
    • P19075
    • P19397
    • P21926
    • P23942
    • P27701
    • P40197
    • P41732
    • P42081
    • P48509
    • P60507
    • P60508
    • P60509
    • P61550
    • P61565
    • P61566
    • P61570
    • P62079
    • P78324
    • P78410
    • Q3SXY7
    • Q5JXA9
    • Q5R3F8
    • Q5TFQ8
    • Q5VT99
    • Q5ZPR3
    • Q6EMK4
    • Q6N022
    • Q6PJG9
    • Q6UXE8
    • Q6UXG8
    • Q6UXK2
    • Q6UXK5
    • Q6UXM1
    • Q6UY18
    • Q7KYR7
    • Q7L0X0
    • Q7L985
    • Q7Z7D3
    • Q8IW52
    • Q8N7C0
    • Q8N386
    • Q8N967
    • Q8NG11
    • Q8TBG9
    • Q8TF66
    • Q8WUT4
    • Q8WVV5
    • Q9BTN0
    • Q9H3W5
    • Q9H5Y7
    • Q9H9K5
    • Q9H156
    • Q9H756
    • Q9HBL6
    • Q9HBW1
    • Q9HCJ2
    • Q9N2J8
    • Q9N2K0
    • Q9NT68
    • Q9NT99
    • Q9NX77
    • Q9NZM1
    • Q9NZU0
    • Q9NZU1
    • Q9P1W8
    • Q9P2V4
    • Q9P244
    • Q9P273
    • Q9UKH3
    • Q9UKZ4
    • Q9ULH4
    • Q9UM44
    • Q9UQF0
    • Q9Y3B3
    • Q50LG9
    • Q86SJ2
    • Q86UF1
    • Q86VH4
    • Q86VH5
    • Q86WK6
    • Q86WK7
    • Q96FE5
    • Q96FV3
    • Q96JA1
    • Q96KV6
    • Q96NI6
    • Q96PB8
    • Q96PL5
    • Q96PX8
    • Q96S97
    • Q96SJ8
    • Q902F8
    • Q902F9
    • Q12999
    • Q13410
    • Q13641
    • Q14392
    • Q16563
    • Q69384

  • UnkownFunction
    • A0ZSE6
    • A1A5B4
    • A6NM11
    • A6NMS7
    • O14894
    • O15321
    • O60309
    • O94886
    • P11836
    • P30408
    • P48230
    • Q4KMQ2
    • Q5M7Z0
    • Q5T3F8
    • Q5XXA6
    • Q6IEE7
    • Q6IWH7
    • Q6UWL6
    • Q6UX27
    • Q7Z6M3
    • Q7Z7J7
    • Q7Z408
    • Q8IZU9
    • Q8N3T6
    • Q8N5U1
    • Q9BYT9
    • Q9H2W1
    • Q9HD45
    • Q9NQ90
    • Q9NQX7
    • Q9NV96
    • Q9P1W3
    • Q9Y287
    • Q9Y624
    • Q14C87
    • Q14DG7
    • Q24JP5
    • Q75V66
    • Q86WI0
    • Q86XK7
    • Q96CE8
    • Q96IQ7
    • Q96J84
    • Q96PZ7
    • Q96QE4
    • Q495A1
    • Q92544
    • Q99805

  • Ligand
    • O00548
    • O95727
    • O95754
    • P01893
    • P01903
    • P01906
    • P01909
    • P01920
    • P04440
    • P06340
    • P13747
    • P13762
    • P13765
    • P17693
    • P20036
    • P28067
    • P28068
    • P30511
    • P41217
    • P52799
    • P78504
    • P79483
    • P80370
    • P98172
    • Q6UY11
    • Q8N0W4
    • Q8N2Q7
    • Q8NFY4
    • Q8NFZ3
    • Q8NFZ4
    • Q9C0C4
    • Q9H2E6
    • Q9H3S1
    • Q9H3T2
    • Q9H3T3
    • Q9NPR2
    • Q9NR61
    • Q9NTN9
    • Q9NYJ7
    • Q9NZ94
    • Q9P283
    • Q9Y219
    • Q13591
    • Q15768
    • Q29980
    • Q29983
    • Q30154
    • Q92854

  • Miscellaneous

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. StructuralAndAdhesion
  2. P57087

P57087

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "P57087"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: P57087
Protein Name: Junctional adhesion molecule B
Organism: Homo sapiens
Function: Junctional adhesion protein that mediates heterotypic cell-cell interactions with its cognate receptor JAM3 to regulate different cellular processes (PubMed:11590146, PubMed:11823489, PubMed:24357068). Plays a role in homing and mobilization of hematopoietic stem and progenitor cells within the bone marrow (PubMed:24357068). At the surface of bone marrow stromal cells, it contributes to the retention of the hematopoietic stem and progenitor cells expressing JAM3 (PubMed:11590146, PubMed:24357068). Plays a central role in leukocytes extravasation by facilitating not only transmigration but also tethering and rolling of leukocytes along the endothelium (PubMed:12239159). Tethering and rolling of leukocytes are dependent on the binding by JAM2 of the integrin alpha-4/beta-1 (PubMed:12070135). Plays a role in spermatogenesis where JAM2 and JAM3, which are respectively expressed by Sertoli and germ cells, mediate an interaction between both cell types and play an essential role in the anchorage of germ cells onto Sertoli cells and the assembly of cell polarity complexes during spermatid differentiation (By similarity). Also functions as an inhibitory somatodendritic cue that prevents the myelination of non-axonal parts of neurons (By similarity). During myogenesis, it is involved in myocyte fusion (By similarity). May also play a role in angiogenesis (By similarity)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "P57087"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
2307 P57087 Miscellaneous StructuralAndAdhesion 0 5 2018.95693 12 16.2
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

P56880
P78369