SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. Other_receptors
  2. O75509

  • GPCR
    • A3KFT3
    • A4D2G3
    • A6NCV1
    • A6ND48
    • A6NDH6
    • A6NDL8
    • A6NET4
    • A6NF89
    • A6NGY5
    • A6NH00
    • A6NHA9
    • A6NHG9
    • A6NIJ9
    • A6NJZ3
    • A6NKK0
    • A6NL08
    • A6NL26
    • A6NM03
    • A6NM76
    • A6NMS3
    • A6NMU1
    • A6NMZ5
    • A6NND4
    • B2RN74
    • O00144
    • O00155
    • O00222
    • O00270
    • O00398
    • O00421
    • O00590
    • O14581
    • O14626
    • O14842
    • O14843
    • O15218
    • O15303
    • O15354
    • O15529
    • O15552
    • O43193
    • O43194
    • O43603
    • O43613
    • O43614
    • O43749
    • O43869
    • O60353
    • O60403
    • O60404
    • O60412
    • O60431
    • O60755
    • O75084
    • O75388
    • O75473
    • O75899
    • O76000
    • O76001
    • O76002
    • O76099
    • O76100
    • O95006
    • O95007
    • O95013
    • O95047
    • O95136
    • O95221
    • O95222
    • O95371
    • O95665
    • O95800
    • O95838
    • O95918
    • O95977
    • P0C7N1
    • P0C7N5
    • P0C7N8
    • P0C7T2
    • P0C7T3
    • P0C604
    • P0C617
    • P0C623
    • P0C626
    • P0C628
    • P0C629
    • P0C645
    • P0C646
    • P03999
    • P04201
    • P07550
    • P08172
    • P08173
    • P08588
    • P08908
    • P08912
    • P08913
    • P11229
    • P13945
    • P14416
    • P18089
    • P18825
    • P20309
    • P21452
    • P21453
    • P21462
    • P21554
    • P21728
    • P21730
    • P21731
    • P21917
    • P21918
    • P25021
    • P25024
    • P25025
    • P25089
    • P25100
    • P25103
    • P25105
    • P25106
    • P25116
    • P25929
    • P28221
    • P28222
    • P28335
    • P28566
    • P29274
    • P29275
    • P29371
    • P30411
    • P30518
    • P30542
    • P30550
    • P30559
    • P30872
    • P30874
    • P30939
    • P30953
    • P30954
    • P30968
    • P30988
    • P31391
    • P32238
    • P32241
    • P32245
    • P32246
    • P32247
    • P32248
    • P32249
    • P32302
    • P32745
    • P33032
    • P34969
    • P34972
    • P34981
    • P34982
    • P34995
    • P34998
    • P35346
    • P35367
    • P35368
    • P35372
    • P35408
    • P35410
    • P35414
    • P35462
    • P37288
    • P41143
    • P41145
    • P41146
    • P41180
    • P41231
    • P41586
    • P41587
    • P41968
    • P43088
    • P43115
    • P43116
    • P43119
    • P43220
    • P43657
    • P46089
    • P46092
    • P46093
    • P46095
    • P46663
    • P47211
    • P47775
    • P47804
    • P47872
    • P47881
    • P47883
    • P47884
    • P47887
    • P47888
    • P47890
    • P47893
    • P47898
    • P47900
    • P47901
    • P48145
    • P48146
    • P48546
    • P49019
    • P49146
    • P49190
    • P49238
    • P49286
    • P49683
    • P49685
    • P50052
    • P50391
    • P50406
    • P51582
    • P51677
    • P51684
    • P51686
    • P55085
    • P58170
    • P58173
    • P58180
    • P58181
    • P58182
    • P59533
    • P59534
    • P59540
    • P59541
    • P59542
    • P59543
    • P59922
    • P60893
    • P61073
    • Q5JQS5
    • Q5JRS4
    • Q5NUL3
    • Q5T6X5
    • Q5T848
    • Q5TZ20
    • Q5UAW9
    • Q5VW38
    • Q6DWJ6
    • Q6IEU7
    • Q6IEV9
    • Q6IEY1
    • Q6IEZ7
    • Q6IF00
    • Q6IF42
    • Q6IF63
    • Q6IF82
    • Q6IF99
    • Q6IFG1
    • Q6IFH4
    • Q6IFN5
    • Q6NV75
    • Q6PRD1
    • Q6U736
    • Q6W5P4
    • Q7RTX0
    • Q7RTX1
    • Q7Z5H5
    • Q7Z601
    • Q7Z602
    • Q8IXE1
    • Q8IYL9
    • Q8N0Y3
    • Q8N0Y5
    • Q8N6U8
    • Q8N127
    • Q8N146
    • Q8N148
    • Q8N162
    • Q8N349
    • Q8N628
    • Q8NDV2
    • Q8NFJ5
    • Q8NFJ6
    • Q8NFN8
    • Q8NFZ6
    • Q8NG75
    • Q8NG76
    • Q8NG77
    • Q8NG78
    • Q8NG80
    • Q8NG81
    • Q8NG83
    • Q8NG84
    • Q8NG85
    • Q8NG92
    • Q8NG94
    • Q8NG95
    • Q8NG98
    • Q8NG99
    • Q8NGA0
    • Q8NGA1
    • Q8NGA2
    • Q8NGA5
    • Q8NGA6
    • Q8NGA8
    • Q8NGB2
    • Q8NGB4
    • Q8NGB6
    • Q8NGB8
    • Q8NGB9
    • Q8NGC0
    • Q8NGC1
    • Q8NGC2
    • Q8NGC3
    • Q8NGC4
    • Q8NGC5
    • Q8NGC6
    • Q8NGC7
    • Q8NGC8
    • Q8NGC9
    • Q8NGD0
    • Q8NGD2
    • Q8NGD3
    • Q8NGD4
    • Q8NGD5
    • Q8NGE0
    • Q8NGE1
    • Q8NGE2
    • Q8NGE3
    • Q8NGE5
    • Q8NGE7
    • Q8NGE8
    • Q8NGE9
    • Q8NGF0
    • Q8NGF1
    • Q8NGF3
    • Q8NGF4
    • Q8NGF6
    • Q8NGF7
    • Q8NGF8
    • Q8NGF9
    • Q8NGG0
    • Q8NGG1
    • Q8NGG2
    • Q8NGG3
    • Q8NGG4
    • Q8NGG5
    • Q8NGG6
    • Q8NGG7
    • Q8NGG8
    • Q8NGH3
    • Q8NGH5
    • Q8NGH6
    • Q8NGH7
    • Q8NGH8
    • Q8NGH9
    • Q8NGI0
    • Q8NGI1
    • Q8NGI2
    • Q8NGI3
    • Q8NGI4
    • Q8NGI6
    • Q8NGI7
    • Q8NGI8
    • Q8NGI9
    • Q8NGJ0
    • Q8NGJ1
    • Q8NGJ2
    • Q8NGJ3
    • Q8NGJ4
    • Q8NGJ5
    • Q8NGJ6
    • Q8NGJ7
    • Q8NGJ8
    • Q8NGK0
    • Q8NGK1
    • Q8NGK2
    • Q8NGK3
    • Q8NGK4
    • Q8NGK5
    • Q8NGK6
    • Q8NGK9
    • Q8NGL0
    • Q8NGL1
    • Q8NGL2
    • Q8NGL3
    • Q8NGL4
    • Q8NGL6
    • Q8NGL7
    • Q8NGL9
    • Q8NGM1
    • Q8NGM8
    • Q8NGM9
    • Q8NGN0
    • Q8NGN1
    • Q8NGN2
    • Q8NGN3
    • Q8NGN4
    • Q8NGN5
    • Q8NGN6
    • Q8NGN7
    • Q8NGN8
    • Q8NGP0
    • Q8NGP2
    • Q8NGP3
    • Q8NGP4
    • Q8NGP6
    • Q8NGP8
    • Q8NGP9
    • Q8NGQ1
    • Q8NGQ2
    • Q8NGQ3
    • Q8NGQ4
    • Q8NGQ5
    • Q8NGQ6
    • Q8NGR1
    • Q8NGR2
    • Q8NGR3
    • Q8NGR4
    • Q8NGR5
    • Q8NGR6
    • Q8NGR8
    • Q8NGR9
    • Q8NGS0
    • Q8NGS1
    • Q8NGS2
    • Q8NGS3
    • Q8NGS4
    • Q8NGS5
    • Q8NGS6
    • Q8NGS7
    • Q8NGS8
    • Q8NGS9
    • Q8NGT0
    • Q8NGT1
    • Q8NGT2
    • Q8NGT7
    • Q8NGT9
    • Q8NGU1
    • Q8NGU4
    • Q8NGU9
    • Q8NGV0
    • Q8NGV5
    • Q8NGV6
    • Q8NGV7
    • Q8NGW1
    • Q8NGW6
    • Q8NGX0
    • Q8NGX1
    • Q8NGX2
    • Q8NGX3
    • Q8NGX5
    • Q8NGX6
    • Q8NGX8
    • Q8NGX9
    • Q8NGY0
    • Q8NGY1
    • Q8NGY2
    • Q8NGY3
    • Q8NGY5
    • Q8NGY6
    • Q8NGY7
    • Q8NGY9
    • Q8NGZ0
    • Q8NGZ2
    • Q8NGZ3
    • Q8NGZ4
    • Q8NGZ5
    • Q8NGZ6
    • Q8NGZ9
    • Q8NH00
    • Q8NH01
    • Q8NH02
    • Q8NH03
    • Q8NH04
    • Q8NH05
    • Q8NH06
    • Q8NH07
    • Q8NH09
    • Q8NH10
    • Q8NH16
    • Q8NH18
    • Q8NH19
    • Q8NH21
    • Q8NH37
    • Q8NH40
    • Q8NH41
    • Q8NH42
    • Q8NH43
    • Q8NH48
    • Q8NH49
    • Q8NH50
    • Q8NH51
    • Q8NH53
    • Q8NH54
    • Q8NH55
    • Q8NH56
    • Q8NH57
    • Q8NH59
    • Q8NH60
    • Q8NH61
    • Q8NH63
    • Q8NH64
    • Q8NH69
    • Q8NH70
    • Q8NH72
    • Q8NH73
    • Q8NH74
    • Q8NH76
    • Q8NH79
    • Q8NH80
    • Q8NH81
    • Q8NH83
    • Q8NH85
    • Q8NH87
    • Q8NH90
    • Q8NH92
    • Q8NH93
    • Q8NH94
    • Q8NH95
    • Q8NHA4
    • Q8NHA6
    • Q8NHA8
    • Q8NHB1
    • Q8NHB7
    • Q8NHB8
    • Q8NHC4
    • Q8NHC5
    • Q8NHC6
    • Q8NHC7
    • Q8NHC8
    • Q8TCB6
    • Q8TCW9
    • Q8TDS4
    • Q8TDS5
    • Q8TDS7
    • Q8TDT2
    • Q8TDU9
    • Q8TDV2
    • Q8TDV5
    • Q8TE23
    • Q8WZ84
    • Q8WZ92
    • Q8WZ94
    • Q8WZA6
    • Q9BXA5
    • Q9BXC0
    • Q9BXC1
    • Q9BXE9
    • Q9BY21
    • Q9BZJ6
    • Q9BZJ7
    • Q9BZJ8
    • Q9GZK3
    • Q9GZK4
    • Q9GZK6
    • Q9GZK7
    • Q9GZM6
    • Q9GZN0
    • Q9GZP7
    • Q9GZQ6
    • Q9H1C0
    • Q9H1Y3
    • Q9H2C5
    • Q9H2C8
    • Q9H3N8
    • Q9H205
    • Q9H207
    • Q9H208
    • Q9H209
    • Q9H210
    • Q9H228
    • Q9H255
    • Q9H339
    • Q9H340
    • Q9H341
    • Q9H342
    • Q9H343
    • Q9H346
    • Q9H461
    • Q9HB89
    • Q9HBW0
    • Q9HBX8
    • Q9HBX9
    • Q9HC97
    • Q9HCU4
    • Q9NPB9
    • Q9NPC1
    • Q9NPG1
    • Q9NQ84
    • Q9NQN1
    • Q9NS66
    • Q9NS67
    • Q9NSD7
    • Q9NWF4
    • Q9NYM4
    • Q9NYQ6
    • Q9NYQ7
    • Q9NYV7
    • Q9NYV8
    • Q9NYW0
    • Q9NYW1
    • Q9NYW2
    • Q9NYW3
    • Q9NYW5
    • Q9NYW6
    • Q9NYW7
    • Q9NZD1
    • Q9NZH0
    • Q9NZP0
    • Q9NZP2
    • Q9NZP5
    • Q9P1P5
    • Q9P1Q5
    • Q9P296
    • Q9UBS5
    • Q9UBY5
    • Q9UGF5
    • Q9UGF6
    • Q9UGF7
    • Q9UHM6
    • Q9UKL2
    • Q9UKP6
    • Q9ULV1
    • Q9ULW2
    • Q9UNW8
    • Q9UP38
    • Q9UPC5
    • Q9Y2T5
    • Q9Y2T6
    • Q9Y3N9
    • Q9Y4A9
    • Q9Y5N1
    • Q9Y5P0
    • Q9Y5P1
    • Q9Y5X5
    • Q9Y5Y3
    • Q9Y5Y4
    • Q9Y585
    • Q49SQ1
    • Q86SM5
    • Q86SM8
    • Q86VZ1
    • Q96CH1
    • Q96KK4
    • Q96LA9
    • Q96LB0
    • Q96LB1
    • Q96LB2
    • Q96P65
    • Q96P66
    • Q96P67
    • Q96P68
    • Q96P69
    • Q96P88
    • Q96R08
    • Q96R09
    • Q96R27
    • Q96R28
    • Q96R45
    • Q96R47
    • Q96R48
    • Q96R54
    • Q96R67
    • Q96R69
    • Q96R72
    • Q96R84
    • Q96RA2
    • Q96RB7
    • Q96RC9
    • Q96RD0
    • Q96RD1
    • Q96RD2
    • Q96RD3
    • Q96RI0
    • Q96RI9
    • Q96RJ0
    • Q969F8
    • Q969V1
    • Q01718
    • Q01726
    • Q02643
    • Q03431
    • Q13255
    • Q13258
    • Q13304
    • Q13324
    • Q13467
    • Q13585
    • Q13606
    • Q13607
    • Q14330
    • Q14332
    • Q14416
    • Q14439
    • Q14831
    • Q14832
    • Q14833
    • Q15077
    • Q15612
    • Q15617
    • Q15619
    • Q15620
    • Q15622
    • Q15722
    • Q15760
    • Q15761
    • Q16538
    • Q16570
    • Q16581
    • Q16602
    • Q92847
    • Q99463
    • Q99500
    • Q99527
    • Q99677
    • Q99678
    • Q99680
    • Q99705
    • Q99788
    • Q99835

  • IG
    • A6NI73
    • O14931
    • O14931
    • O75015
    • O75019
    • O75022
    • O75023
    • O75054
    • O76036
    • O95185
    • O95256
    • O95944
    • O95976
    • P01589
    • P01833
    • P06126
    • P08637
    • P08887
    • P10912
    • P12314
    • P12318
    • P12319
    • P14778
    • P14784
    • P15151
    • P15260
    • P15509
    • P15812
    • P15813
    • P16471
    • P16871
    • P17181
    • P19235
    • P24394
    • P26951
    • P26992
    • P27930
    • P29016
    • P29017
    • P31785
    • P31994
    • P31995
    • P32927
    • P32942
    • P38484
    • P40189
    • P40238
    • P42701
    • P42702
    • P43146
    • P43626
    • P43627
    • P43628
    • P43629
    • P43630
    • P43631
    • P43632
    • P48357
    • P48551
    • P55899
    • P59901
    • P78310
    • P78552
    • Q2VWP7
    • Q4KMG0
    • Q5DX21
    • Q5T2D2
    • Q5VWK5
    • Q6DN72
    • Q6IA17
    • Q6PI73
    • Q6Q8B3
    • Q6UXG3
    • Q6UXL0
    • Q6UXZ4
    • Q6ZN44
    • Q8IU57
    • Q8IVU1
    • Q8IZJ1
    • Q8N6C5
    • Q8N6P7
    • Q8N109
    • Q8N149
    • Q8N423
    • Q8N743
    • Q8NHK3
    • Q8NHL6
    • Q8NI17
    • Q8TD46
    • Q8TDQ1
    • Q8TDY8
    • Q8WWV6
    • Q9BWV1
    • Q9HB29
    • Q9HBE5
    • Q9HCK4
    • Q9NP60
    • Q9NP99
    • Q9NPH3
    • Q9NSI5
    • Q9NZC2
    • Q9NZN1
    • Q9UGN4
    • Q9UHF4
    • Q9Y6N7
    • Q96LA5
    • Q96LA6
    • Q96MS0
    • Q96P31
    • Q496F6
    • Q969P0
    • Q01113
    • Q01344
    • Q01638
    • Q08334
    • Q08708
    • Q13261
    • Q13478
    • Q13651
    • Q14626
    • Q14627
    • Q14943
    • Q14952
    • Q14953
    • Q14954
    • Q15109
    • Q15762
    • Q92637
    • Q92859
    • Q93033
    • Q99062
    • Q99650
    • Q99665
    • Q99706
    • Q99795

  • Kinase
    • O15146
    • O15197
    • P00533
    • P04626
    • P04629
    • P06213
    • P07333
    • P07949
    • P08069
    • P08581
    • P08922
    • P09619
    • P10721
    • P11362
    • P14616
    • P16066
    • P16234
    • P17342
    • P17948
    • P20594
    • P21709
    • P21802
    • P21860
    • P22455
    • P22607
    • P25092
    • P27037
    • P29317
    • P29320
    • P29322
    • P29323
    • P29376
    • P30530
    • P34925
    • P35590
    • P35916
    • P35968
    • P36888
    • P36894
    • P36896
    • P36897
    • P37023
    • P37173
    • P54753
    • P54756
    • P54760
    • P54762
    • P54764
    • Q5JZY3
    • Q8NER5
    • Q9UF33
    • Q01973
    • Q01974
    • Q02763
    • Q04771
    • Q04912
    • Q06418
    • Q08345
    • Q12866
    • Q13308
    • Q13705
    • Q13873
    • Q15303
    • Q15375
    • Q16288
    • Q16620
    • Q16671
    • Q16832

  • Other_receptors
    • O00206
    • O00220
    • O14522
    • O14786
    • O14836
    • O15031
    • O15455
    • O43157
    • O60462
    • O60486
    • O60602
    • O60603
    • O60895
    • O60896
    • O75051
    • O75074
    • O75096
    • O75197
    • O75509
    • O75578
    • O75581
    • P01130
    • P01133
    • P05106
    • P05107
    • P05556
    • P06756
    • P08138
    • P08514
    • P08575
    • P08648
    • P10586
    • P11215
    • P13612
    • P14151
    • P16109
    • P16144
    • P16581
    • P17301
    • P18084
    • P18433
    • P18564
    • P19438
    • P20333
    • P20701
    • P20702
    • P23229
    • P23467
    • P23468
    • P23470
    • P23471
    • P25445
    • P25942
    • P26006
    • P26010
    • P26012
    • P28827
    • P28908
    • P34741
    • P36941
    • P38570
    • P43489
    • P46531
    • P51805
    • P53708
    • P56199
    • P58400
    • P58401
    • P78357
    • P98155
    • P98164
    • Q5VYJ5
    • Q7Z4F1
    • Q8NAC3
    • Q8NFM7
    • Q8NFR9
    • Q8WY21
    • Q8WYK1
    • Q9BXR5
    • Q9BZ76
    • Q9C0A0
    • Q9HAV5
    • Q9HCM2
    • Q9HD43
    • Q9HDB5
    • Q9NR96
    • Q9NR97
    • Q9NRM6
    • Q9NS68
    • Q9NYK1
    • Q9NZR2
    • Q9P2S2
    • Q9UBN6
    • Q9UHC6
    • Q9UIW2
    • Q9UKX5
    • Q9ULB1
    • Q9ULL4
    • Q9UM47
    • Q9UMZ3
    • Q9UNE0
    • Q9UPU3
    • Q9Y2C9
    • Q9Y4C0
    • Q9Y4D7
    • Q9Y5U5
    • Q9Y6Q6
    • Q9Y561
    • Q86VZ4
    • Q96F46
    • Q96NU0
    • Q96PQ0
    • Q969Z4
    • Q02223
    • Q04721
    • Q07011
    • Q07954
    • Q12913
    • Q13332
    • Q13349
    • Q13635
    • Q13683
    • Q13797
    • Q14114
    • Q15256
    • Q15262
    • Q15399
    • Q16827
    • Q16849
    • Q92673
    • Q92729
    • Q92932
    • Q92956
    • Q93038
    • Q99466
    • Q99467
    • Q99523

  • SCAR
    • A6BM72
    • O60449
    • P07306
    • P07307
    • P13473
    • P16671
    • P21757
    • P22897
    • P26715
    • P26717
    • P26718
    • P78380
    • P98153
    • Q2HXU8
    • Q5QGZ9
    • Q5VY43
    • Q6UX15
    • Q6UXB4
    • Q6UXN8
    • Q6ZS10
    • Q8IX05
    • Q8NC01
    • Q8WTV0
    • Q8WWQ8
    • Q9BXN2
    • Q9H2X3
    • Q9HCU0
    • Q9NY25
    • Q9NZS2
    • Q9P126
    • Q9UBG0
    • Q9UHP7
    • Q9UQV4
    • Q96E93
    • Q96GP6
    • Q96KG7
    • Q07108
    • Q07444
    • Q12918
    • Q13018
    • Q14162

  • Receptors

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. Other_receptors
  2. O75509

O75509

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "O75509"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: O75509
Protein Name: Tumor necrosis factor receptor superfamily member 21
Organism: Homo sapiens
Function: Promotes apoptosis, possibly via a pathway that involves the activation of NF-kappa-B. Can also promote apoptosis mediated by BAX and by the release of cytochrome c from the mitochondria into the cytoplasm. Plays a role in neuronal apoptosis, including apoptosis in response to amyloid peptides derived from APP, and is required for both normal cell body death and axonal pruning. Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP). N-APP binds TNFRSF21; this triggers caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). Negatively regulates oligodendrocyte survival, maturation and myelination. Plays a role in signaling cascades triggered by stimulation of T-cell receptors, in the adaptive immune response and in the regulation of T-cell differentiation and proliferation. Negatively regulates T-cell responses and the release of cytokines such as IL4, IL5, IL10, IL13 and IFNG by Th2 cells. Negatively regulates the production of IgG, IgM and IgM in response to antigens. May inhibit the activation of JNK in response to T-cell stimulation. Also acts as a regulator of pyroptosis: recruits CASP8 in response to reactive oxygen species (ROS) and subsequent oxidation, leading to activation of GSDMC (PubMed:34012073)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "O75509"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
5341 O75509 Receptors Other_receptors 67 623 1049.305909 199 4.89999
5342 O75509 Receptors Other_receptors 304 668 4089.022918 132 -7.50000
5343 O75509 Receptors Other_receptors 73 173 1062.994526 494 6.50000
5344 O75509 Receptors Other_receptors 5 134 817.734072 102 -11.90000
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

O75197
O75578