Code
import requests
import urllib3
urllib3.disable_warnings()
def fetch_uniprot_data(uniprot_id):
= f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
url = requests.get(url, verify=False) # Disable SSL verification
response # Raise an error for bad status codes
response.raise_for_status() return response.json()
def display_uniprot_data(data):
= data.get('primaryAccession', 'N/A')
primary_accession = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
protein_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
gene_name = data.get('organism', {}).get('scientificName', 'N/A')
organism
= next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
function_comment = function_comment['texts'][0]['value'] if function_comment else 'N/A'
function
# Printing the data
print(f"UniProt ID: {primary_accession}")
print(f"Protein Name: {protein_name}")
print(f"Organism: {organism}")
print(f"Function: {function}")
# Replace this with the UniProt ID you want to fetch
= "Q16820"
uniprot_id = fetch_uniprot_data(uniprot_id)
data display_uniprot_data(data)
UniProt ID: Q16820
Protein Name: Meprin A subunit beta
Organism: Homo sapiens
Function: Membrane metallopeptidase that sheds many membrane-bound proteins. Exhibits a strong preference for acidic amino acids at the P1' position. Known substrates include: FGF19, VGFA, IL1B, IL18, procollagen I and III, E-cadherin, KLK7, gastrin, ADAM10, tenascin-C. The presence of several pro-inflammatory cytokine among substrates implicate MEP1B in inflammation. It is also involved in tissue remodeling due to its capability to degrade extracellular matrix components. Cleaves also the amyloid precursor protein/APP, thereby releasing neurotoxic amyloid beta peptides (PubMed:27180357)