SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. Channels
  2. P47870

  • Active_transporters
    • O15438
    • O15439
    • O15440
    • O60706
    • O94911
    • O95342
    • O95477
    • P05023
    • P08183
    • P13637
    • P21439
    • P23634
    • P33527
    • P50993
    • P78363
    • Q2M3G0
    • Q4VNC0
    • Q5T3U5
    • Q8IUA7
    • Q8IZY2
    • Q8N139
    • Q8WWZ7
    • Q9BZC7
    • Q9H7F0
    • Q9H172
    • Q9H222
    • Q9HD20
    • Q9NP78
    • Q9NQ11
    • Q86UK0
    • Q86UQ4
    • Q96J65
    • Q01814
    • Q13733
    • Q16720
    • Q92887
    • Q99758

  • AuxillaryTransportUnit
    • A6NFC5
    • O60359
    • O60939
    • P05026
    • P14415
    • P51164
    • P54709
    • P62955
    • P98161
    • Q4KMZ8
    • Q5VU97
    • Q5VXU1
    • Q7Z442
    • Q7Z443
    • Q8IWT1
    • Q8N8D7
    • Q8TDX9
    • Q8WXS4
    • Q8WXS5
    • Q9BXT2
    • Q9NPA1
    • Q9NTG1
    • Q9NY72
    • Q9UBN1
    • Q9UF02
    • Q9UN42
    • Q9Y691
    • Q86W47
    • Q06432
    • Q07699
    • Q16558

  • Channels
    • A5X5Y0
    • A8MPY1
    • O00591
    • O14764
    • O15399
    • O15547
    • O43315
    • O43424
    • O43497
    • O60391
    • O75311
    • O94778
    • O95264
    • O95279
    • P02708
    • P07510
    • P11230
    • P14867
    • P17787
    • P18505
    • P18507
    • P23415
    • P23416
    • P24046
    • P28472
    • P28476
    • P29972
    • P30301
    • P30532
    • P30926
    • P31644
    • P32297
    • P34903
    • P35498
    • P35499
    • P36544
    • P39086
    • P41181
    • P42261
    • P42262
    • P42263
    • P43681
    • P46098
    • P47869
    • P47870
    • P48050
    • P48058
    • P48167
    • P48169
    • P48549
    • P51575
    • P51801
    • P55064
    • P55087
    • P56373
    • P78334
    • Q7Z418
    • Q8N1C3
    • Q8TCU5
    • Q8TDN1
    • Q8TDN2
    • Q8WXA8
    • Q9BSA4
    • Q9C0H2
    • Q9GZU1
    • Q9GZZ6
    • Q9H1D0
    • Q9H313
    • Q9HBA0
    • Q9NQA5
    • Q9NY46
    • Q9P0L9
    • Q9P0X4
    • Q9UBL9
    • Q9UGM1
    • Q9UI33
    • Q9ULK0
    • Q9ULQ1
    • Q9UN88
    • Q9UQD0
    • Q9Y5S1
    • Q9Y5Y9
    • Q70Z44
    • Q96KK3
    • Q96PS8
    • Q401N2
    • Q01118
    • Q04844
    • Q05586
    • Q05901
    • Q07001
    • Q12879
    • Q13002
    • Q13003
    • Q13224
    • Q13563
    • Q13936
    • Q14500
    • Q14524
    • Q14957
    • Q15822
    • Q15825
    • Q15858
    • Q16099
    • Q16445
    • Q16478
    • Q99250
    • Q99571
    • Q99572
    • Q99928

  • Other_transporters
    • A6NH21
    • Q5GH77
    • Q8NFU0
    • Q8NFU1
    • Q9NRX5
    • Q86VE9

  • SLC
    • A0AV02
    • A0PJK1
    • A1A5C7
    • A4IF30
    • A6NNN8
    • G3V0H7
    • O00337
    • O00341
    • O15375
    • O15431
    • O43511
    • O43826
    • O43868
    • O60669
    • O94956
    • O95436
    • O95528
    • O95907
    • P02730
    • P08195
    • P09131
    • P13866
    • P19634
    • P32418
    • P40879
    • P41440
    • P43003
    • P43004
    • P43005
    • P43007
    • P46059
    • P46721
    • P48067
    • P48664
    • P48764
    • P50443
    • P52569
    • P53985
    • P54219
    • P55011
    • P55017
    • P57103
    • P58743
    • P82251
    • Q2Y0W8
    • Q3KNW5
    • Q4U2R8
    • Q5PT55
    • Q6NVV3
    • Q6P5W5
    • Q6PXP3
    • Q6T423
    • Q6U841
    • Q6YBV0
    • Q6ZMD2
    • Q6ZMH5
    • Q6ZQN7
    • Q6ZSM3
    • Q7L0J3
    • Q7LBE3
    • Q7RTT9
    • Q08AI6
    • Q8IWA5
    • Q8IY34
    • Q8IZD6
    • Q8N4M1
    • Q8N130
    • Q8N434
    • Q8N695
    • Q8N697
    • Q8NCS7
    • Q8NDX2
    • Q8NFF2
    • Q8NHS3
    • Q8WUG5
    • Q8WWI5
    • Q8WWT9
    • Q9BXP2
    • Q9BXS9
    • Q9BY07
    • Q9BYT1
    • Q9BZD2
    • Q9BZV2
    • Q9BZW2
    • Q9C0K1
    • Q9H2B4
    • Q9H2H9
    • Q9H2X9
    • Q9H2Y9
    • Q9H015
    • Q9H841
    • Q9HAS3
    • Q9HC58
    • Q9NP94
    • Q9NPD5
    • Q9NRM0
    • Q9NSA0
    • Q9NUM3
    • Q9NY64
    • Q9NYB5
    • Q9P2U7
    • Q9P2U8
    • Q9UBD6
    • Q9UBY0
    • Q9UGH3
    • Q9UHI7
    • Q9UHW9
    • Q9UI40
    • Q9UIG8
    • Q9UKG4
    • Q9ULF5
    • Q9UP95
    • Q9UPR5
    • Q9Y6L6
    • Q9Y6M7
    • Q9Y6R1
    • Q9Y267
    • Q9Y666
    • Q9Y694
    • Q53GD3
    • Q71RS6
    • Q96GZ6
    • Q96JW4
    • Q96N87
    • Q96QE2
    • Q96RN1
    • Q96T83
    • Q495M3
    • Q496J9
    • Q504Y0
    • Q969I6
    • Q01650
    • Q05940
    • Q06495
    • Q07837
    • Q12908
    • Q13183
    • Q13336
    • Q13433
    • Q13621
    • Q14542
    • Q14973
    • Q15758
    • Q15849
    • Q16348
    • Q16572
    • Q92581
    • Q92911
    • Q92959

  • Transporters

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. Channels
  2. P47870

P47870

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "P47870"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: P47870
Protein Name: Gamma-aminobutyric acid receptor subunit beta-2
Organism: Homo sapiens
Function: Beta subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:19763268, PubMed:27789573, PubMed:29950725, PubMed:8264558). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (PubMed:29950725). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (By similarity). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (By similarity). GABAARs containing alpha-1 and beta-2 or -3 subunits exhibit synaptogenic activity; the gamma-2 subunit being necessary but not sufficient to induce rapid synaptic contacts formation (PubMed:23909897, PubMed:25489750). Extrasynaptic beta-2 receptors contribute to the tonic GABAergic inhibition (By similarity). Beta-containing GABAARs can simultaneously bind GABA and histamine where histamine binds at the interface of two neighboring beta subunits, which may be involved in the regulation of sleep and wakefulness (By similarity)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "P47870"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
1705 P47870 Transporters Channels 363 825 873.785321 121 13.3999
1706 P47870 Transporters Channels 1247 1070 1375.853521 105 7.2000
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

P47869
P48050