SURFACE-Bind
  • Home
  • Analysis
  • Protein Families
    • Enzymes
    • Receptors
    • Transporters
    • Miscellaneous
    • Unclassified
    • Unmatched
  • About
  1. SLC
  2. Q9C0K1

  • Active_transporters
    • O15438
    • O15439
    • O15440
    • O60706
    • O94911
    • O95342
    • O95477
    • P05023
    • P08183
    • P13637
    • P21439
    • P23634
    • P33527
    • P50993
    • P78363
    • Q2M3G0
    • Q4VNC0
    • Q5T3U5
    • Q8IUA7
    • Q8IZY2
    • Q8N139
    • Q8WWZ7
    • Q9BZC7
    • Q9H7F0
    • Q9H172
    • Q9H222
    • Q9HD20
    • Q9NP78
    • Q9NQ11
    • Q86UK0
    • Q86UQ4
    • Q96J65
    • Q01814
    • Q13733
    • Q16720
    • Q92887
    • Q99758

  • AuxillaryTransportUnit
    • A6NFC5
    • O60359
    • O60939
    • P05026
    • P14415
    • P51164
    • P54709
    • P62955
    • P98161
    • Q4KMZ8
    • Q5VU97
    • Q5VXU1
    • Q7Z442
    • Q7Z443
    • Q8IWT1
    • Q8N8D7
    • Q8TDX9
    • Q8WXS4
    • Q8WXS5
    • Q9BXT2
    • Q9NPA1
    • Q9NTG1
    • Q9NY72
    • Q9UBN1
    • Q9UF02
    • Q9UN42
    • Q9Y691
    • Q86W47
    • Q06432
    • Q07699
    • Q16558

  • Channels
    • A5X5Y0
    • A8MPY1
    • O00591
    • O14764
    • O15399
    • O15547
    • O43315
    • O43424
    • O43497
    • O60391
    • O75311
    • O94778
    • O95264
    • O95279
    • P02708
    • P07510
    • P11230
    • P14867
    • P17787
    • P18505
    • P18507
    • P23415
    • P23416
    • P24046
    • P28472
    • P28476
    • P29972
    • P30301
    • P30532
    • P30926
    • P31644
    • P32297
    • P34903
    • P35498
    • P35499
    • P36544
    • P39086
    • P41181
    • P42261
    • P42262
    • P42263
    • P43681
    • P46098
    • P47869
    • P47870
    • P48050
    • P48058
    • P48167
    • P48169
    • P48549
    • P51575
    • P51801
    • P55064
    • P55087
    • P56373
    • P78334
    • Q7Z418
    • Q8N1C3
    • Q8TCU5
    • Q8TDN1
    • Q8TDN2
    • Q8WXA8
    • Q9BSA4
    • Q9C0H2
    • Q9GZU1
    • Q9GZZ6
    • Q9H1D0
    • Q9H313
    • Q9HBA0
    • Q9NQA5
    • Q9NY46
    • Q9P0L9
    • Q9P0X4
    • Q9UBL9
    • Q9UGM1
    • Q9UI33
    • Q9ULK0
    • Q9ULQ1
    • Q9UN88
    • Q9UQD0
    • Q9Y5S1
    • Q9Y5Y9
    • Q70Z44
    • Q96KK3
    • Q96PS8
    • Q401N2
    • Q01118
    • Q04844
    • Q05586
    • Q05901
    • Q07001
    • Q12879
    • Q13002
    • Q13003
    • Q13224
    • Q13563
    • Q13936
    • Q14500
    • Q14524
    • Q14957
    • Q15822
    • Q15825
    • Q15858
    • Q16099
    • Q16445
    • Q16478
    • Q99250
    • Q99571
    • Q99572
    • Q99928

  • Other_transporters
    • A6NH21
    • Q5GH77
    • Q8NFU0
    • Q8NFU1
    • Q9NRX5
    • Q86VE9

  • SLC
    • A0AV02
    • A0PJK1
    • A1A5C7
    • A4IF30
    • A6NNN8
    • G3V0H7
    • O00337
    • O00341
    • O15375
    • O15431
    • O43511
    • O43826
    • O43868
    • O60669
    • O94956
    • O95436
    • O95528
    • O95907
    • P02730
    • P08195
    • P09131
    • P13866
    • P19634
    • P32418
    • P40879
    • P41440
    • P43003
    • P43004
    • P43005
    • P43007
    • P46059
    • P46721
    • P48067
    • P48664
    • P48764
    • P50443
    • P52569
    • P53985
    • P54219
    • P55011
    • P55017
    • P57103
    • P58743
    • P82251
    • Q2Y0W8
    • Q3KNW5
    • Q4U2R8
    • Q5PT55
    • Q6NVV3
    • Q6P5W5
    • Q6PXP3
    • Q6T423
    • Q6U841
    • Q6YBV0
    • Q6ZMD2
    • Q6ZMH5
    • Q6ZQN7
    • Q6ZSM3
    • Q7L0J3
    • Q7LBE3
    • Q7RTT9
    • Q08AI6
    • Q8IWA5
    • Q8IY34
    • Q8IZD6
    • Q8N4M1
    • Q8N130
    • Q8N434
    • Q8N695
    • Q8N697
    • Q8NCS7
    • Q8NDX2
    • Q8NFF2
    • Q8NHS3
    • Q8WUG5
    • Q8WWI5
    • Q8WWT9
    • Q9BXP2
    • Q9BXS9
    • Q9BY07
    • Q9BYT1
    • Q9BZD2
    • Q9BZV2
    • Q9BZW2
    • Q9C0K1
    • Q9H2B4
    • Q9H2H9
    • Q9H2X9
    • Q9H2Y9
    • Q9H015
    • Q9H841
    • Q9HAS3
    • Q9HC58
    • Q9NP94
    • Q9NPD5
    • Q9NRM0
    • Q9NSA0
    • Q9NUM3
    • Q9NY64
    • Q9NYB5
    • Q9P2U7
    • Q9P2U8
    • Q9UBD6
    • Q9UBY0
    • Q9UGH3
    • Q9UHI7
    • Q9UHW9
    • Q9UI40
    • Q9UIG8
    • Q9UKG4
    • Q9ULF5
    • Q9UP95
    • Q9UPR5
    • Q9Y6L6
    • Q9Y6M7
    • Q9Y6R1
    • Q9Y267
    • Q9Y666
    • Q9Y694
    • Q53GD3
    • Q71RS6
    • Q96GZ6
    • Q96JW4
    • Q96N87
    • Q96QE2
    • Q96RN1
    • Q96T83
    • Q495M3
    • Q496J9
    • Q504Y0
    • Q969I6
    • Q01650
    • Q05940
    • Q06495
    • Q07837
    • Q12908
    • Q13183
    • Q13336
    • Q13433
    • Q13621
    • Q14542
    • Q14973
    • Q15758
    • Q15849
    • Q16348
    • Q16572
    • Q92581
    • Q92911
    • Q92959

  • Transporters

On this page

  • General information
  • AlphaFold model
  • Surface representation - binding sites
  • All detected seeds aligned
  • Seed scores per sites
  • Binding site metrics
  • Binding site sequence composition
  • Download
  1. SLC
  2. Q9C0K1

Q9C0K1

Author

Hamed Khakzad

Published

August 10, 2024

General information

Code
import requests
import urllib3
urllib3.disable_warnings()

def fetch_uniprot_data(uniprot_id):
    url = f"https://rest.uniprot.org/uniprotkb/{uniprot_id}.json"
    response = requests.get(url, verify=False)  # Disable SSL verification
    response.raise_for_status()  # Raise an error for bad status codes
    return response.json()

def display_uniprot_data(data):
    primary_accession = data.get('primaryAccession', 'N/A')
    protein_name = data.get('proteinDescription', {}).get('recommendedName', {}).get('fullName', {}).get('value', 'N/A')
    gene_name = data.get('gene', [{'geneName': {'value': 'N/A'}}])[0]['geneName']['value']
    organism = data.get('organism', {}).get('scientificName', 'N/A')
    
    function_comment = next((comment for comment in data.get('comments', []) if comment['commentType'] == "FUNCTION"), None)
    function = function_comment['texts'][0]['value'] if function_comment else 'N/A'

    # Printing the data
    print(f"UniProt ID: {primary_accession}")
    print(f"Protein Name: {protein_name}")
    print(f"Organism: {organism}")
    print(f"Function: {function}")

# Replace this with the UniProt ID you want to fetch
uniprot_id = "Q9C0K1"
data = fetch_uniprot_data(uniprot_id)
display_uniprot_data(data)
UniProt ID: Q9C0K1
Protein Name: Metal cation symporter ZIP8
Organism: Homo sapiens
Function: Electroneutral divalent metal cation:bicarbonate symporter of the plasma membrane mediating the cellular uptake of zinc and manganese, two divalent metal cations important for development, tissue homeostasis and immunity (PubMed:12504855, PubMed:22898811, PubMed:23403290, PubMed:26637978, PubMed:29337306, PubMed:29453449). Transports an electroneutral complex composed of a divalent metal cation and two bicarbonate anions or alternatively a bicarbonate and a selenite anion (PubMed:27166256, PubMed:31699897). Thereby, it also contributes to the cellular uptake of selenium, an essential trace metal and micronutrient (PubMed:27166256). Also imports cadmium a non-essential metal which is cytotoxic and carcinogenic (PubMed:27466201). May also transport iron and cobalt through membranes (PubMed:22898811). Through zinc import, indirectly regulates the metal-dependent transcription factor MTF1 and the expression of some metalloproteases involved in cartilage catabolism and also probably heart development (PubMed:29337306). Also indirectly regulates the expression of proteins involved in cell morphology and cytoskeleton organization (PubMed:29927450). Indirectly controls innate immune function and inflammatory response by regulating zinc cellular uptake which in turn modulates the expression of genes specific of these processes (PubMed:23403290, PubMed:28056086). Protects, for instance, cells from injury and death at the onset of inflammation (PubMed:18390834). By regulating zinc influx into monocytes also directly modulates their adhesion to endothelial cells and arteries (By similarity). Reclaims manganese from the bile at the apical membrane of hepatocytes, thereby regulating the activity of the manganese-dependent enzymes through the systemic levels of the nutrient (PubMed:28481222). Also participates in manganese reabsorption in the proximal tubule of the kidney (PubMed:26637978). By mediating the extracellular uptake of manganese by cells of the blood-brain barrier, may also play a role in the transport of the micronutrient to the brain (PubMed:26637978, PubMed:31699897). With manganese cellular uptake also participates in mitochondrial proper function (PubMed:29453449). Finally, also probably functions intracellularly, translocating zinc from lysosome to cytosol to indirectly enhance the expression of specific genes during TCR-mediated T cell activation (PubMed:19401385)

More information:   

AlphaFold model

Surface representation - binding sites

The computed point cloud for pLDDT > 0.6. Each atom is sampled on average by 10 points.

To see the predicted binding interfaces, you can choose color theme “uncertainty”.

  • Go to the “Controls Panel”

  • Below “Components”, to the right, click on “…”

  • “Set Coloring” by “Atom Property”, and “Uncertainty/Disorder”

All detected seeds aligned

Seed scores per sites

Code
import re
import pandas as pd
import os
import plotly.express as px

ID = "Q9C0K1"
data_list = []

name_pattern = re.compile(r'name: (\S+)')
score_pattern = re.compile(r'score: (\d+\.\d+)')
desc_dist_score_pattern = re.compile(r'desc_dist_score: (\d+\.\d+)')

directory = f"/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/Surfaceome_top100_per_site/{ID}_A"

for filename in os.listdir(directory):
    if filename.startswith("output_sorted_") and filename.endswith(".score"):
        filepath = os.path.join(directory, filename)
        with open(filepath, 'r') as file:
            for line in file:
                name_match = name_pattern.search(line)
                score_match = score_pattern.search(line)
                desc_dist_score_match = desc_dist_score_pattern.search(line)
                
                if name_match and score_match and desc_dist_score_match:
                    name = name_match.group(1)
                    score = float(score_match.group(1))
                    desc_dist_score = float(desc_dist_score_match.group(1))
                    
                    simple_filename = filename.replace("output_sorted_", "").replace(".score", "")
                    data_list.append({
                        'name': name[:-1],
                        'score': score,
                        'desc_dist_score': desc_dist_score,
                        'file': simple_filename
                    })

data = pd.DataFrame(data_list)

fig = px.scatter(
    data,
    x='score',
    y='desc_dist_score',
    color='file',
    title='Score vs Desc Dist Score',
    labels={'score': 'Score', 'desc_dist_score': 'Desc Dist Score'},
    hover_data={'name': True}
)

fig.update_layout(
    legend_title_text='File',
    legend=dict(
        yanchor="top",
        y=0.99,
        xanchor="left",
        x=1.05
    )
)

fig.show()

Binding site metrics

Code
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.express as px

df_total = pd.read_csv('/Users/hamedkhakzad/Research_EPFL/1_postdoc_project/Surfaceome_web_app/www/database/df_flattened.csv')
df_plot = df_total[df_total['acc_flat'] == ID]
df_plot ['Total seeds'] = df_plot.loc[:,['seedss_a','seedss_b']].sum(axis=1)
df_plot.loc[:, ["acc_flat", "main_classs", "sub_classs", "seedss_a", "seedss_b", "areass", "bsss", "hpss"]]
acc_flat main_classs sub_classs seedss_a seedss_b areass bsss hpss
4640 Q9C0K1 Transporters SLC 0 0 0.0 0 0.0
Code
import math
import matplotlib.pyplot as plt

features = ['seedss_a', 'seedss_b', 'areass', 'hpss']
titles = ['Alpha seeds', 'Beta seeds', 'Area', 'Hydrophobicity']
num_features = len(features)

if len(df_plot) > 8:
    num_rows = 2
    num_cols = 2
else:
    num_rows = 1
    num_cols = 4

fig, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(9, num_rows * 5))

axes = axes.flatten()
positions = range(1, len(df_plot) + 1)

for i, feature in enumerate(features):
    title = titles[i]
    axes[i].bar(positions, df_plot[feature], color=['blue', 'orange', 'green', 'red', 'purple', 'brown'])
    axes[i].set_title(title, fontsize=13)
    axes[i].set_xticks(positions)
    axes[i].set_xticklabels(df_plot['bsss'], rotation=90)
    axes[i].set_xlabel("Center residues", fontsize=13)
    axes[i].set_ylabel(title, fontsize=13)

for j in range(len(features), len(axes)):
    fig.delaxes(axes[j])

plt.tight_layout()
plt.show()

Binding site sequence composition

Code
amino_acid_map = {
    'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C',
    'GLN': 'Q', 'GLU': 'E', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
    'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P',
    'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'
}

from collections import Counter
from ast import literal_eval
from matplotlib.gridspec import GridSpec
import warnings
warnings.filterwarnings("ignore", message="Attempting to set identical low and high xlims")

def convert_to_single_letter(aa_list):
    if type(aa_list) == str:
        aa_list = literal_eval(aa_list)
    return [amino_acid_map[aa] for aa in aa_list]

def create_sequence_visualizations(df, max_letters_per_row=20):
    for idx, row in df.iterrows():
        bsss = row['bsss']
        AAss = row['AAss']
        single_letter_sequence = convert_to_single_letter(AAss)
        
        freq_counter = Counter(single_letter_sequence)
        total_aa = len(single_letter_sequence)
        frequencies = {aa: freq / total_aa for aa, freq in freq_counter.items()}
        
        cmap = plt.get_cmap('viridis')
        norm = plt.Normalize(0, max(frequencies.values()) if frequencies else 1)
        
        n_rows = (len(single_letter_sequence) + max_letters_per_row - 1) // max_letters_per_row
        fig = plt.figure(figsize=(max_letters_per_row * 0.6, n_rows * 1.2 + 0.5))
        
        gs = GridSpec(n_rows + 1, 1, height_ratios=[1] * n_rows + [0.1], hspace=0.3)
        
        for row_idx in range(n_rows):
            start_idx = row_idx * max_letters_per_row
            end_idx = min((row_idx + 1) * max_letters_per_row, len(single_letter_sequence))
            ax = fig.add_subplot(gs[row_idx, 0])
            ax.set_xlim(0, max_letters_per_row)
            ax.set_ylim(0, 1)
            ax.axis('off')
            
            for i, aa in enumerate(single_letter_sequence[start_idx:end_idx]):
                freq = frequencies[aa]
                color = cmap(norm(freq))
                ax.text(i + 0.5, 0.5, aa, ha='center', va='center', fontsize=24, color=color, fontweight='bold')
        
        cbar_ax = fig.add_subplot(gs[-1, 0])
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        sm.set_array([])
        cbar = plt.colorbar(sm, cax=cbar_ax, orientation='horizontal')
        cbar.set_label('Frequency', fontsize=12)
        cbar.ax.tick_params(labelsize=12)
        
        plt.suptitle(f"Center residue {bsss}", fontsize=14)
        plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)
        plt.show()
            
create_sequence_visualizations(df_plot)

Download

To download all the seeds and score files for this entry Click Here!

Q9BZW2
Q9H2B4